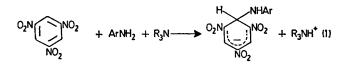
Catalysis by Tertiary Amines of σ-Complex Formation Between 1,3,5-Trinitrobenzene and Aniline

By ERWIN BUNCEL* and HEI W. LEUNG

(Department of Chemistry, Queen's University, Kingston, Ontario, Canada)


Summary The trinitrobenzene-anilide σ -complex is readily formed directly from trinitrobenzene and aniline in the presence of diazabicyclo-octane or triethylamine in dimethyl sulphoxide.

THE observation that 1,3,5-trinitrobenzene (TNB) does not react with aniline to yield a Meisenheimer type σ -complex is puzzling since σ -complex formation between TNB and primary (or secondary) aliphatic amines is well documented.¹ We have recently shown that the TNBanilide complex can be obtained, indirectly, however, from reaction of the TNB-methoxide σ -complex with aniline in dimethyl sulphoxide (DMSO) solution.² This reaction can be extended to substituted anilines.³

In view of the unreactivity of TNB with aniline, the nature of the TNB-OMe⁻-aniline reaction poses a number of questions, and direct displacement⁴ and dissociative mechanisms have been advanced.⁵ We have now observed that the TNB-anilide σ -complex can be formed directly from TNB and aniline, in the presence of triethylamine or 1,4-diazabicyclo[2,2,2]octane (DABCO), in DMSO solution.

The u.v.-visible spectrum obtained in the interaction of

TNB with aniline in the presence of DABCO is typical of σ -complexes of TNB;⁶ in the present case there are characteristic twin absorption peaks at 446 and 524 nm (broad),

with a ratio of 1.7:1 in the extinction coefficients. For example, addition of 50μ l of a solution of TNB (2.5×10^{-2} M) in DMSO to 2.5 ml of a solution containing aniline and DABCO (0.1 m each) in DMSO gives a red solution. Comparison with the previously observed³ spectral characteristics of the TNB-anilide complex (ϵ_{446} 30,400, ϵ_{523} 17,700) shows that ca. 85% conversion has occurred. The degree of conversion into the σ -complex increases as the concentration of DABCO is increased, at a given concentration of TNB and aniline. The reaction occurs readily at 25 °C; with $[TNB] = 1.54 \times 10^{-3}$ M, [DABCO] = 0.01 M, $[PhNH_2]$ = 0.135 M, the pseudo-first-order rate constant for formation of the anilide complex is 0.153 s⁻¹. N.m.r. spectroscopy (cf. refs. 2 and 3) confirmed σ -complex formation in the TNB-PhNH₂-DABCO-DMSO system; use of triethylamine in place of DABCO likewise afforded the σ -complex.

Reaction (1) thus affords ready access to trinitrobenzenearylamine σ -complexes.

We thank the National Research Council of Canada for support.

(Received, 25th September 1974; Com. 1209.)

¹ R. Foster and C. A. Fyfe, Tetrahedron, 1966, 22, 1831; M. R. Crampton and V. Gold, J. Chem. Soc. (B), 1967, 23; C. F. Bernasconi, J. Amer. Chem. Soc., 1970, 92, 129; M. J. Strauss, S. P. B. Taylor, and R. Reznick, J. Org. Chem., 1972, 37, 3076.
² E. Buncel and J. G. K. Webb, Canad. J. Chem., 1972, 50, 129.
³ E. Buncel and J. G. K. Webb, Canad. J. Chem., 1974, 52, 630; E. Buncel, H. Jarrell, H. W. Leung, and J. G. K. Webb, J. Org. Chem., 1974, 39, 272.
⁴ A. R. Butler, Ann. Reports (B), 1972, 69, 114.
⁵ J. G. K. Webb, Ph.D. Thesis, Queen's University, Ontario.
⁶ R. Foster and C. A. Fyfe, Rev. Pure Appl. Chem., 1966, 16, 61; E. Buncel, A. R. Norris, and K. E. Russell, Quart. Rev., 1968, 22.

⁶ R. Foster and C. A. Fyfe, *Rev. Pure Appl. Chem.*, 1966, 16, 61; E. Buncel, A. R. Norris, and K. E. Russell, *Quart. Rev.*, 1968, 22, 123; M. R. Crampton, *Adv. Phys. Org. Chem.*, 1969, 7, 211; M. J. Strauss, *Chem. Rev.*, 1970, 70, 667; C. F. Bernasconi, MTP International Review of Science, Organic Chemistry Series One, 1973, vol. 3, p. 33.